Synthesis of 2-Aryl[1,2,4]triazolo[1,5-a]pyrimidines

K. KAMALA, P. JAYAPRASAD RAO, and K. KONDAL REDDY*
Department of Chemistry, Osmania University, Hyderabad 500007, India
(Received November 13, 1987)

Synopsis. 2-(Aroylamino)pyrimidines (4) have been converted into 1-(2-pyrimidyl)-5-aryl-1H-tetrazoles (6) by treatment with PCl₅ followed by azidolysis in aqueous acetone solution. Pyrolysis of 6 in decalin gave 2-aryl[1,2,4]triazolo-[1,5-a]pyrimidines (8). A reasonable pathway for the formation of 8 from 6 is suggested. Structures of all the compounds have been established by elemental analysis and spectral data.

1-Aminopyrimidinium salt (1), obtained from 2-aminopyrimidine and *O*-(mesitylsulfonyl)hydroxylamine, on reaction with benzoyl chloride is known to give 2-phenyl[1,2,4]triazolo[1,5-a]pyrimidine¹⁾ (2, mp 185—0.5 °C) in a very low yield (8%). In view of the synthetic utility of 1,5-disubstituted tetrazoles²⁾ and in continuation of our studies on thermal decomposition of 1-heteroaryl-5-aryl-1*H*-tetrazoles,³⁻⁶⁾ we report a convenient synthesis of 2-aryl[1,2,4]triazolo[1,5-a]-pyrimidines by the pyrolysis of 1-(2-pyrimidyl)-5-aryl-1*H*-tetrazoles.

Results and Discussion

Benzoylation of 2-aminopyrimidine (3, X=H) in the presence of pyridine gave 2-benzamidopyrimidine⁷⁾ (4a). Treatment of 4a with PCl₅, followed by reaction with NaN₃ of the resulting N-(2-pyrimidyl)arenecarboximidoyl chloride (5a) without isolation, led to the formation of a colorless compound, 6a, mp 95 °C. The

compound was analyzed for $C_{11}H_8N_6$. In its mass spectrum the molecular ion was observed at m/z 224. Its IR spectrum revealed the absence of amide and azide functions. The presence of C=N- in the compound was indicated by the appearance of a band at 1600 cm⁻¹. Its 1H NMR spectrum (CDCl₃) revealed two peaks—a multiplet at δ 7.1—7.5 and a doublet at δ 8.6 in 3:1 ratio. The doublet is assignable to protons in 4 and 6 positions of the pyrimidine ring. On the basis of these data the compound **6a** has been assigned as 1-(2-pyrimidyl)-5-phenyl-1H-tetrazole (**6a**) structure.

A number of 2-(aroylamino)pyrimidines (**4b**—**1**, Table 1) obtained by the reaction of 2-amino-, 2-amino-5-chloro-, and 2-amino-5-bromopyrimidines⁸⁾ with benzoyl, p-toluoyl, p-anisoyl, p-chlorobenzoyl chlorides in the presence of pyridine were converted into 1-(2-pyrimidyl)-5-aryl-1H-tetrazoles (**6b**—**1**) on treatment with PCl_5 followed by azidolysis.

Heating a mixture of **6a** and finely ground pure sand at 180—190 °C and column chromatography of the reaction mixture gave a colorless crystalline compound, **8a**, mp 186 °C. On the basis of the elemental analysis and spectral data [IR(KBr): 1600 cm^{-1} (\rangle C=N), no absorptions due to \rangle C=O, \rangle NH, and N₃ functions. 1 H NMR (CDCl₃) δ 7.3—7.75 (m, phenyl protons), δ 8.2—9.0 (m, pyrimidine protons) in 5:3 ratio and MS: M⁺ at m/z 196], the compound **8a** has been assigned as 2-phenyl[1,2,4]triazolo[1,5-a]pyrimidine

$$\begin{array}{c}
\bigoplus_{N \in \mathbb{N}} NH_2 & \bigoplus_{N \in \mathbb{N}} NH_2$$

a: X=R=H; b: X=H,R=Me;c:X=H, R=OMe;d: X=H,R=Cl;e: X=Cl,R=H; f: X=Cl,R=Me; g: X=Cl,R=OMe;h: X=R=Cl;i: X=Br,R=H;j: X=Br,R=Me; k: X=Br,R=OMe;l: X=Br,R=Cl

Table 1. Characterization Data of 2-(Aroylamino)pyrimidines (4), 1-(2-Pyrimidyl)-5-aryl-1H-tetrazoles (6) and 2-Aryl[1,2,4]triazolo[1,5-a]pyrimidines (8)

Compd.	$^{ m Mp}_{ heta_{ m m}}$ /°C	Yield %		IR cm ⁻¹	M-1 f1-	Calcd (%)			Found (%)			
			NH	C=O	C=N	Mol. formula	C	Н	N	С	Н	N
4a	142—1437)	90	3300	1650	_	_	_	_			_	
4b	148-149	85	3250	1660	_	$C_{12}H_{11}N_3O$	67.60	5.16	19.72	67.57	5.12	19.65
4 c	181—182	78	3200	1650		$C_{12}H_{11}N_3O_2$	62.88	4.80	18.34	62.85	4.62	18.28
4 d	109—111	95	3320	1670		$C_{11}H_8N_3OCl$	56.53	3.43	17.99	56.52	3.40	17.82
4 e	139-140	85	3310	1650		$C_{11}H_8N_3OCl$	56.53	3.43	17.99	56.51	3.41	17.85
4 f	129—130	82	3200	1665		$C_{12}H_{10}N_3OCl$	58.18	4.04	16.97	58.08	4.01	16.93
4g	184185	87	3280	1660	_	$C_{12}H_{10}N_3O_2Cl$	54.65	3.79	15.94	54.62	3.75	15.88
4h	165—166	84	3310	1680	_	$C_{11}H_7N_3OCl_2$	49.25	2.61	15.67	49.20	2.58	15.62
4 i	178—179	78	3320	1670	_	$C_{11}H_8N_3OBr$	47.48	2.88	15.11	47.38	2.65	15.08
4 j	129—130	80	3250	1665	_	$C_{12}H_{10}N_3OBr$	49.32	3.42	14.38	49.29	3.31	14.28
4k	169-170	74	3330	1660		$C_{12}H_{10}N_3O_2Br$	46.75	3.25	13.64	46.72	3.18	13.60
4 1	154—155	84	3300	1685	_	$C_{11}H_7N_3OBrCl$	42.24	2.24	13.44	42.22	2.20	13.42
6a	94—95	65			1600	$C_{11}H_8N_6$	58.93	3.57	37.50	58.91	3.52	37.42
6b	138—139	58		_	1600	$C_{12}H_{10}N_6$	60.50	4.20	35.29	60.40	4.16	35.22
6 c	191—192	49			1600	$C_{12}H_{10}N_{6}O$	56.69	3.94	33.07	56.58	3.88	33.00
6 d	185—186	68	_	_	1600	$C_{11}H_7N_6Cl$	51.06	2.71	32.50	51.00	2.60	32.39
6 e	194—195	64	_	_	1600	$C_{11}H_7N_6Cl$	51.06	2.71	32.50	51.02	2.73	32.52
6f	146—147	55			1610	$C_{12}H_9N_6Cl$	52.84	3.30	30.83	52.86	3.33	30.80
6g	169—170	52	_	_	1600	$C_{12}H_9N_6OCl$	49.91	3.12	29.12	49.85	3.14	29.10
6h	151—152	60	_	_	1610	$C_{11}H_6N_6Cl_2$	45.05	2.05	28.67	45.00	2.00	28.62
6i	205—206	55			1605	$C_{11}H_7N_6Br$	43.56	2.31	27.73	43.50	2.30	27.78
6j	140—141	60			1590	$C_{12}H_9N_6Br$	45.43	2.84	26.50	45.60	2.71	26.45
6k	161—162	65			1610	$C_{12}H_9N_6OBr$	43.24	2.70	25.23	43.47	2.65	24.98
61	148—149	62	_	_	1620	$C_{11}H_6N_6BrCl$	39.11	1.78	24.89	39.20	1.75	24.82
8a	186 ¹⁾	50	_		1600	$C_{11}H_8N_4$	67.35	4.08	28.57	67.30	4.01	28.50
8b**	200-201	42		_	1610	$C_{12}H_{10}N_4$	68.57	4.76	26.67	68.52	4.70	26.65
8 c	280—281	40	_	_	1600	$C_{12}H_{10}N_4O$	63.72	4.42	24.78	63.69	4.38	24.70
8d	142—143	52	_	_	1580	$C_{11}H_7N_4Cl$	57.27	3.04	24.30	57.36	3.00	24.28
8e	230—231	55		_	1590	$C_{11}H_7N_4Cl$	57.27	3.04	24.30	57.30	3.02	24.20
8 f	115—116	53	_	_	1605	$C_{12}H_9N_4Cl$	58.89	3.68	22.90	58.90	3.60	22.85
8 g	218—219	45		_	1610	$C_{12}H_9N_4OCl$	55.28	3.45	21.50	55.26	3.40	21.38
8h	160—161	58			1605	$C_{11}H_6N_4Cl_2$	49.81	2.26	21.13	49.80	2.20	20.92
8i	144—145	50	_		1580	$C_{11}H_7N_4Br$	48.00	2.55	20.36	48.32	2.50	20.28
8 j	203—204	52	_	_	1600	$C_{12}H_9N_4Br$	49.83	3.11	19.38	49.80	3.00	19.46
8k	165—166	53	_	_	1610	$C_{12}H_9N_4OBr$	47.21	2.95	18.36	47.19	2.86	18.38
81	150—151	62		_	1610	C ₁₁ H ₆ N ₄ BrCl	42.65	1.94	18.09	42.60	1.90	18.06

6b* ¹H NMR (CDCl₃): δ 2.48 (s, 3H), 7.2—7.75 (m, 5H), 8.1 (d, 2H), M⁺ at m/z 238. **8b**** ¹H NMR (CDCl₃): δ 2.42 (s, 3H), 7.25—7.6 (m, 5H), 8.2 (d, 2H), M⁺ at m/z 210.

(8a) structure. The yield of 8a in this reaction was 25%. Pyrolysis of 1-(2-pyrimidyl)-5-phenyl-1H-tetrazole was also carried out in toluene, xylene, tetralin, and decalin. The tetrazole was recovered unchanged even after prolonged refluxing in toluene (bp 110°C) or xylene (bp 140 °C). Refluxing the tetrazole in tetralin (bp 210 °C) for 3 h yielded 8a in 35% yield. Decomposition of the tetrazole was complete by refluxing in decalin (bp 180 °C) for 3 h to give 8a in 50% yield. Decomposition of other 1-(2-pyrimidyl)-5-aryl-1H-tetrazoles (6b-l) in decalin resulted in the formation of the corresponding **8b—l** (Table 1). The formation of **8**, in the pyrolysis of 6, can be reasonably explained through stepwise elimination of a molecule of nitrogen from 6 and the cyclization of the resulting nitrene intermediate 7 in singlet state.⁹⁾

Experimental

2-(Aroylamino)pyrimidines (4). General Procedure: To a solution of 2-aminopyrimidine in pyridine was added an

equimolar amount of aroyl chloride with shaking. After the addition was complete, the reaction mixture was allowed to stand at room temperature for 2 h. The crude product that separated on dilution was filtered, washed with 10% sodium hydrogencarbonate solution, then several times with water. The dry solid was recrystallized from benzene-methanol to give pure 4 as summarized in Table 1.

1-(2-Pyrimidyl)-5-aryl-1*H*-tetrazoles (6). General Procedure: A mixture of 4 (5.00 mmol) and PCl₅ (1.3 g, 5.00 mmol) was heated at 100 °C for 1 h, when the evolution of fumes of HCl ceased. Excess of POCl₃ was removed under reduced pressure and the residual imidoyl chloride was treated with ice-cold sodium azide (0.37 g, 5.00 mmol) and excess of sodium acetate trihydrate in water (25 cm³) and acetone (30 cm³) with stirring. The stirring was continued overnight, acetone was removed under reduced pressure, and the remaining aqueous portion was extracted with chloroform. The dried chloroform extract was chromatographed over a column of neutral alumina, eluting with benzene to give pure 6 (Table 1).

Thermal Decomposition of 6. General Procedure: A solution of 1-(2-pyrimidyl)-5-aryl-1*H*-tetrazole (6, 2.50 mmol) in decalin (25 cm³) was refluxed for 3 h. The decalin

was removed by distillation under reduced pressure. The residue was extracted with chloroform, the extract was concentrated and the residue was subjected to chromatography over a neutral alumina column, eluting with benzene-ethyl acetate (10:1) mixture to give pure 8 (Table 1).

One of the authors, K. Kamala, is thankful to CSIR, New Delhi, India for the award of SRF.

References

- 1) S. W. Schneller, "Comprehensive Heterocyclic Chemistry," ed by K. T. Potts, Pergamon Press, Oxford (1984), Vol. 5, Part 4A, p. 890, and also part therein Y. Tamura, K. Joong-Hyup, and M. Ikeda, *J. Heterocycl. Chem.*, **12**, 107 (1975).
 - 2) R. N. Butler, "Advances in Heterocyclic Chemistry,"

- ed by A. R. Katritzky and A. J. Boulton, Academic Press, New York (1977), Vol. 21, p. 324.
- 3) K. Kamala, P. Jayaprasad Rao, and K. Kondal Reddy, Indian J. Chem., 22B, 1194 (1983).
- 4) P. Jayaprasad Rao and K. Kondal Reddy, *Indian J. Chem.*, 22b, 117 (1983).
- 5) G. Ramachandraiah and K. Kondal Reddy, *Indian J. Chem.*, **24B**, 808 (1985).
- 6) G. Ramachandraiah and K. Kondal Reddy, *Indian J. Chem.*, **24B**, 908 (1985).
- 7) T. Uro, K. Machida, and K. Hanai, *Chem. Pharm. Bull. Tokyo*, **14(7)**, 756 (1966).
- 8) Z. Čarl, U.S. Patent 2609372; Chem. Abstr., 48, 746 (1954).
- 9) R. A. Abramovitch and E. P. Kyba, in the Chemistry of azido group, ed by Saul Patai, Interscience, London (1971), Chap. 5.